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Towards lowering dissipation bounds for turbulent flows
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Abstract. We examine the background flow variational principle for calculating bounds on the energy
dissipation rate in turbulent shear flow, and suggest to select this principle’s test functions such that
they comply with the small-scale smoothness of real turbulent velocity fields. A self-consistent algorithm
implementing this requirement then yields an upper bound on the dimensionless dissipation coefficient
which shows a weak power-law decrease at high Reynolds numbers, instead of approaching a nonzero
constant, as it did in previous estimates.

PACS. 47.27.Nz Boundary layer and shear turbulence – 47.27.Jv High-Reynolds-number turbulence –
47.20.Ft Instability of shear flows

1 Introduction and motivation

Turbulent flow is an open nonequilibrium system, whose
experimentally adjustable control parameter is the Rey-
nolds number Re, and whose physical control parameter
is the rate of energy that is fed into and dissipated by the
flow. Hence the dependence of the energy dissipation rate
ε on Re, which is the objective of this paper, is of prime
importance.

To be specific, we consider a shear flow between two in-
finite parallel plates separated by a distance h; one of the
plates being fixed and defining the plane z = 0 of a Carte-
sian coordinate system, the other one coinciding with the
plane z = h and being sheared with constant velocity U in
the positive x-direction. The system thus exhibits trans-
lational invariance in the lateral, i.e., y-direction. The
Reynolds number is then defined as

Re = Uh/ν, (1)

where ν is the kinematic viscosity of the incompressible
fluid. (Note that one frequently considers an arrangement
where both plates are sheared against each other, one mov-
ing with velocity U , the other with −U , so that there is
a neutral plane in the middle. In that case one denotes
the distance between the plates as 2h, but still defines the
Reynolds number as Re = Uh/ν [1]. The entailing numer-
ical value of Re is by a factor of four smaller than ours.)

The energy (per mass) dissipated by the flow, averaged
over a time interval of length T and some suitable volume
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where ui (i = x, y, z) denote the components of the fluid’s
Eulerian velocity field u(x, t). As shown in equation (2),
we employ angular brackets to indicate the spatial aver-
age. When measuring the long-time limit

ε ≡ lim
T→∞

εT (3)

in multiples of U2/(hU−1), corresponding to the energy of
the large eddies divided by the large-eddy turnover time,
one obtains the dimensionless dissipation coefficient

cε(Re ) ≡
ε

U3h−1
· (4)

As long as Re remains less than about 1000, the flow be-
tween the plates remains laminar, i.e., it exhibits a linear
velocity profile,

u(x, t) = Ulam(x) = U
z

h
x̂, (5)

with x̂ denoting the unit vector in the x-direction. The cor-
responding dissipation coefficient can be calculated easily,

clam
ε (Re ) = Re−1. (6)

Beyond the onset of turbulence, clam
ε still has the quality

of a rigorous lower bound [2], but the dissipation coeffi-
cient provided by the actual velocity field then becomes
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significantly larger than Re−1. The key question now is
whether cε(Re ) asymptotically approaches a nonzero con-
stant, or whether it decreases to zero when Re becomes
large, and if so, how.

The data are inconclusive yet because of the limited
range of Reynolds numbers accessible in laboratory ex-
periments. Data from bulk measurements seem to be com-
patible with a dissipation coefficient that approaches a fi-
nite constant value [3], but other data for Taylor-Couette
shear flow hint at a systematic decrease with increasingRe
[4,5]. In the case of heat-driven Rayleigh–Bénard flow, cε
(calculated from the measurements of the Nusselt number
Nu [6,7]) obeys a power-law decrease up to Rayleigh num-
bers of the order of 1015. Theory admits both: a cε(Re )
that approaches a finite value in the bulk, if one adheres
to K41 turbulence [8], or cε(Re ) ∝ Re−κ, where κ, tak-
ing on a value of about 0.035, measures the intermittency
corrections in the second order structure function [9].

Clearly, information about the behavior of cε(Re ) car-
ries interesting information about the structure of the
turbulent flow. Therefore, mathematically rigorous up-
per bounds cε(Re ) on cε(Re ) are of high relevance. Such
bounds have been studied by Hopf [10], Howard [1], Busse
(in the framework of his Optimum Theory [11,12]), Do-
ering and Constantin (who have taken up the approach
by Hopf and developed the “background flow method”
[2,13,14]), and the present authors [15–19]. The main re-
sults obtained so far for turbulent shear flow can be sum-
marized as follows: There is an asymptotic nonzero up-
per bound, cε(Re ) ≈ 0.01 for Re → ∞, first derived by
Busse [11] and recently confirmed with higher precision
as [17]

cε(Re ) = 0.010 87(1) for Re→∞. (7)

The latter work, based on an improved background flow
variational principle [2,15], also provides a rigorous bound
cε(Re ) at finite Re. This bound exhibits some structure
at the energy stability limit, related to the formation of
the boundary layer and its separation from the bulk.

Although these two different approaches have led to
the same asymptotic bound on cε, and could be shown
to be equivalent [20], this is hardly the best, the ultimate
answer. The present bound lies more than an order of mag-
nitude above the various available data, and it shows no
slight power-law decrease, as it could be implied by inter-
mittent fluctuations [9], and as it seems to be present in
some measured data [4,5,21]. Moreover, the structures ob-
served at finite Re in the bound obtained in reference [17]
appear to be an artifact brought about by a close rela-
tionship between the background flow method and energy
stability theory. This latter theory [22–24] rests on a de-
composition of the flow field into the laminar flow (5) and
fluctuations around it,

u(x, t) = Ulam(x) + v(x, t) , (8)

leading to the evolution equation

1

2

d

dt
〈v2〉 = −

(
U

h
〈vxvz〉+ ν 〈|∇v|2〉

)
(9)

for the fluctuations’ energy. If the right hand side of this
equation is strictly negative, the fluctuations fade away
monotonously, irrespective of their initial value, so that
the laminar flow is a globally attracting solution to the
equations of motion. This is the case as long as the mini-
mum of the bracketed expression in equation (9) remains
positive, which, by means of the Rayleigh-Ritz variational
principle, is guaranteed as long as all eigenvalues λ of the
eigenvalue problem

λV = −2h2∆V +Re

0 0 1
0 0 0
1 0 0

V +∇P

0 = ∇·V (10)

stay strictly positive; P is a Lagrange multiplier that takes
the incompressibility condition into account. Positivity of
all eigenvalues is ensured for Reynolds numbers below
ReES ≈ 82.65, the energy stability limit, where the low-
est eigenvalue passes through zero. However, this stability
limit does not mark the onset of turbulence; the plane
Couette flow becomes turbulent only at Reynolds num-
bers an order of magnitude higher than ReES. The key
point is that this type of shear flow is linearly stable for
all Re, so that the onset of turbulence is not related to
the loss of linear stability, but rather due to a nonlinear-
nonnormal transition mechanism [25–28]; a comprehensive
discussion of this true transition mechanism can be found
in reference [29]. Since the presently existing variational
principle [15] does incorporate energy stability theory (as
will become obvious later), but not the dynamical features
which actually govern the onset of turbulence, the bound
on the energy dissipation rate derived from this principle
is significantly too high at finite Re: It separates from the
laminar behavior (6) already at the energy stability limit,
although realistic flows suffer the emergence of permanent
turbulence only for much higher Re.

There is an immediate theoretical reason why also the
long-standing asymptotic bound on cε (Busse’s value was
established in 1970) might not be as sharp as intended.
Both the Optimum Theory and the Background Flow ap-
proach, though based on the Navier–Stokes equation of
motion, bound functionals of the velocity field in the space
of all incompressible vector fields that comply with the
proper boundary conditions, rather than restricting these
functionals to the actual solutions of the equations of mo-
tion. Hence, characteristic properties and the structure of
real turbulent flows are not adequately taken into account.

The aim of the present paper is to point out that the
variational upper bound on cε(Re ) can indeed be lowered
if essential properties of actual Navier–Stokes solutions,
and hence of realistic turbulent flows, are respected in the
choice of the admitted test functions. As explained in de-
tail in the following section, a test function is admitted
to the background flow variational principle if a certain
functional provided by that test function stays positive
definite in the entire space of divergence-free vector fields
with homogeneous boundary conditions. We weaken this
restriction by requiring that the functional in question be
positive definite only on the manifold of vector fields whose
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Fig. 1. Bounds on the dissipation coefficient cε(Re ) in com-
parison with experimental data. Slanted dashed line: lower
bound (6) provided by the laminar flow. Uppermost solid
line: upper bound obtained in reference [15] from an ana-
lytical evaluation of the variational principle, employing an
over-restrictive constraint for the test profiles. This bound ap-
proaches 3/(32

√
2) ≈ 0.0663 for Re → ∞. Lower solid line:

upper bound obtained in reference [17]; this bound approaches
the asymptotic value (7). Dashed line bifurcating from that
bound: upper bound computed in this work. The numerical
data are well fitted by cε(Re ) ≈ 0.027×Re−0.08; however, the
asymptotic value of the exponent is −0.18(1). Circles: data
measured by Lathrop et al. for a small-gap Taylor-Couette
flow [4,5]. Triangles: data measured by Reichardt for a plane
Couette flow [21].

fluctuation length scale exceeds the inner length scale of
turbulence, which is of the order of the Kolmogorov length
η. Hence, more test functions are admitted to the varia-
tional principle (more precisely, a given test function be-
comes admissible up to higher Reynolds numbers), which,
in turn, leads to a systematic lowering of the dissipation
bound. We find a weak power-law decrease of the resulting
new bound,

cε(Re ) ∝ Re−α, (11)

with α ≈ 0.08 for Reynolds numbers of the order of 106.
The analysis of our numerical data, summarized in Ap-
pendices A and B, shows that this exponent has merely a
local validity; in the regime of asymptotically high Re it
even increases up to about 0.18. However, this asymptotic
regime is reached only at Reynolds numbers beyond 1020,
so that the local exponent might have more physical sig-
nificance than the asymptotic one. As shown in Figure 1,
the numerical improvement on the previous bound is only
minute for Re ≈ 106, and the new bound still does not
correctly describe the experimental findings, but the fact
that this bound tends to zero asymptotically, and thus
goes below all previously computed bounds, is of princi-
pal importance.

We hasten to add that the weakening of the constraint
imposed on the admitted test functions is physically plau-
sible, but it is not based on rigorous mathematical in-
equalities. In this sense, the improved bound on cε(Re )
computed in this paper does not rest on the same mathe-
matically impeccable foundation as its precursors derived

in references [11,17]. However, our ad-hoc modification of
the variational principle is backed by indisputable phys-
ical facts, and the distinct value of our non-rigorous ar-
gument is that it shows in a paradigmatic manner just
how respecting generic properties of turbulent flows can
translate into improved, physically meaningful dissipation
bounds.

In the following section we scrutinize the background
flow variational principle [2,15] in detail, in order to eluci-
date both its strength and its weakness on a technical
level. This provides the necessary background for Sec-
tion 3, where we suggest a scheme for incorporating the
small-scale smoothness of real turbulent velocity fields into
the variational principle, and present numerical data that
establish the bound (11). In the final Section 4 we discuss
some general features of our solution.

2 Criticism of the variational principle

The technical discussion of the variational principle for
calculating upper bounds on the energy dissipation rate,
and of its modification, starts with the Hopf decomposi-
tion of the turbulent velocity field u(x, t) into an auxiliary,
stationary field U(x), dubbed the “background flow field”
by Doering and Constantin [2], and the deviations v(x, t)
from that field,

u(x, t) = U(x) + v(x, t) . (12)

At this point, the auxiliary field is not specified any fur-
ther (in particular, it should neither be misinterpreted as
some sort of average of the actual flow, nor does it have
to coincide with a stationary solution to the equations of
motion, as it did in the decomposition (8) underlying en-
ergy stability theory), except that we require [2,10] that
it has to carry the no-slip boundary conditions of u(x, t),
i.e., U(x, y, 0, t) = 0 and U(x, y, h, t) = U x̂ for all x, y,
and t. In addition, we impose periodic boundary condi-
tions in both the x- and y-direction. Hence, the devia-
tions v(x, t) satisfy homogeneous boundary conditions, so
that v(x, y, 0, t) = 0 and v(x, y, h, t) = 0, together with
periodic boundary conditions in x and y. (Throughout
this paper, we will use lowercase boldface letters for time-
dependent vector fields like u, whereas uppercase symbols
refer to stationary fields, such as U.) The dynamics of
the incompressible flow are governed by the Navier–Stokes
equations

∂tu + u ·∇u +∇p = ν ∆u

∇·u = 0, (13)

where p is the kinetic pressure.
Plugging the decomposition (12) into these equations,

dotting with v, and spatially averaging over the periodic-
ity volume Ω immediately leads to

1

2

d

dt
〈v2〉+ 〈v · (U ·∇U)〉 + 〈v · (∇U)sym ·v〉

= −ν 〈∇U · ∇v〉 − ν 〈|∇v|2〉, (14)
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with the components of the symmetric tensor (∇U)sym

being given by [(∇U)sym]i,j ≡
1
2 (∂iUj + ∂jUi). This is the

only step in the entire reasoning where the Navier–Stokes
equations are utilized directly. On the other hand, we have
the obvious identity

ν 〈|∇u|2〉 = ν 〈|∇U|2〉+ 2ν 〈∇U · ∇v〉 + ν 〈|∇v|2〉. (15)

Multiplying equation (14) by a dimensionless balance pa-
rameter a > 1, adding equation (15), averaging over some
time interval of length T , and then taking the limit T →∞
results in the exact inequality [15]

ε ≤ ν 〈|∇U|2〉 − a lim inf
T→∞

{
1

T

T∫
0

dt
〈a− 1

a
ν |∇v|2

+ v · (∇U)sym ·v + F ·v
〉}

, (16)

where

F ≡ U ·∇U−
a− 2

a
ν ∆U. (17)

This inequality (16) is not strong, in the sense that it
reduces to an identity if the T → ∞-limit of the time-
average exists (i.e., if the lim inf is equal to the lim sup),
which appears to be not unlikely.

At this point, we have bounded the dissipation rate
by the simple expression ν 〈|∇U|2〉 which depends solely
on the still arbitrary auxiliary field U, plus a functional
of the deviations v, and the task now is to control that
functional. Certainly, the integral on the right hand side
of the inequality (16) is larger than or equal to the ex-
pression which is obtained if the actual deviations v(x, t),
which still reflect the full Navier–Stokes dynamics, are re-
placed by that stationary velocity field which minimizes
the integrand:

1

T

T∫
0

dt

〈
a− 1

a
ν |∇v|2 + v · (∇U)sym ·v + F ·v

〉

≥ inf
V

{〈
a− 1

a
ν |∇V|2 + V · (∇U)sym ·V + F ·V

〉}
·

(18)

This is the decisive step. Even if the actual deviation
v(x, t) comes momentarily close to the minimizing field
during the course of time, it is highly unlikely that it does
so at almost all times. But only under this condition could
the estimate (18) be sharp. In short, by adopting this es-
timate we sacrifice the Navier–Stokes dynamics and thus
gain mathematical simplicity and rigor, but we lose sharp-
ness: It is clear that this estimate will allow us to compute
a bound on the dissipation rate in a relatively straightfor-
ward manner, i.e., without having to solve the equations
of motion, but we cannot a priori know how close that
bound will come to the dissipation rate of real turbulent
shear flow.

However, the situation might not be too bad, since the
minimizing field in the estimate (18) still depends on the
yet unspecified auxiliary field U, so that the bound on ε
furnished by the two inequalities (16) and (18) can be opti-
mized, i.e., made as low as the scheme permits, by varying
U. This constitutes the strength of the approach: Any U
yields a bound on ε, as long as Re remains sufficiently
low; the hope is that by choosing optimal U-fields one
might be able to construct a bound that captures signif-
icant features of the experimentally measured dissipation
rate.

For carrying through this program, we first have to
find, for each given U, the minimizing field in the esti-
mate (18), denoted as W = W{U}. Assuming that F is no
gradient [15], this field has to satisfy the Euler–Lagrange
equations

0 = −2
a− 1

a
ν ∆W + 2 (∇U)sym ·W +∇P + F

0 = ∇·W , (19)

where the Lagrange multiplier P accounts for divergence-
freeness; homogeneous boundary conditions are under-
stood. In order to guarantee that the solution W to this
equation is unique, and indeed leads to a minimum in the
estimate (18), the functional

Ha,U{V} ≡

〈
a− 1

a
ν |∇V|2 + V · (∇U)sym ·V

〉
(20)

has to be strictly positive definite. This is equivalent to the
requirement that all eigenvalues λ of the linear eigenvalue
problem

λV = −2
a− 1

a
ν ∆V + 2 (∇U)sym ·V +∇P

0 = ∇·V (21)

be strictly positive. If this crucial condition is not satisfied,
the chosen U cannot yield a bound, since the second term
in the inequality (16) cannot be controlled. In that case
the particular U has to be discarded and to be replaced
by a more promising one. But if all eigenvalues of (21)
are strictly positive, then computing a bound is an easy
matter: The estimate (18) becomes

1

T

T∫
0

dt
〈a− 1

a
ν |∇v|2 + v · (∇U)sym ·v + F ·v

〉
≥

1

2
〈F ·W〉, (22)

and the bounding inequality (16) finally yields the varia-
tional inequality [15]

ε ≤ inf
a>1,U

{
ν 〈|∇U|2〉 −

a

2
〈W · (U · ∇U)〉

+
1

2
(a− 2)ν 〈W ·∆U〉

}
. (23)
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When applying this general scheme to the plane shear
flow described in the Introduction, the geometry of the
problem suggests the restriction to auxiliary fields U that
are determined by a one-dimensional profile function φ(ζ),

U(x) = Uφ(ζ) x̂ , (24)

where ζ = z/h is the dimensionless height coordinate.
The no-slip boundary conditions imposed on the auxil-
iary field translate into φ(0) = 0 and φ(1) = 1. The profile
functions φ thus become test functions for the variational
principle (23). The eigenvalue problem (21), which decides
by the sign of its eigenvalues whether or not a given test
function is admissible for computing a bound on the dis-
sipation rate, adopts the form

λV = −2h2∆V +Rφ′

0 0 1
0 0 0
1 0 0

V +∇P

0 = ∇·V, (25)

where

R ≡
a

a− 1
Re. (26)

If one tries the laminar profile φ(ζ) = ζ, yielding the con-
stant slope φ′(ζ) = 1, this eigenvalue problem becomes
exactly equal to the problem (10) already encountered in
the energy stability theory of the plane Couette flow, ex-
cept for the replacement of the Reynolds number Re by
the rescaled Reynolds number (26). Hence, for φ(ζ) = ζ
all eigenvalues of (25) will remain positive — the lam-
inar profile will remain an admissible test function for
the variational principle — as long as R remains below
the energy stability limit ReES ≈ 82.65. The maximal
Reynolds number Re compatible with this value of R,
namely ReES, is then found by setting a = ∞, so that
the laminar profile remains admissible for Reynolds num-
bers up to Re = ReES. In this way it is shown that for
Re ≤ ReES the laminar dissipation coefficient (6) provides
not only a lower, but also an upper bound on cε.

The case of the laminar test profile illustrates that the
eigenvalue problem (25) constitutes a generalization of en-
ergy stability theory: Just as the laminar profile defines
the energy stability limit, also every other, arbitrarily cho-
sen test profile φ(ζ) defines a “critical” value Rc{φ} where
the lowest eigenvalue of the corresponding problem (25)
becomes negative. (Since −∆ is positive definite, each φ
will yield only positive eigenvalues for sufficiently small
R.) Setting a = ∞, this value Rc{φ} corresponds to the
maximal Reynolds number Re up to which this φ remains
admissible; for Re > Rc{φ} it has to be discarded.

When considering only auxiliary fields U of the
form (24), the Euler–Lagrange equations (19) for the min-
imizing field W can be solved analytically in terms of the
respective profile φ [15]. After Rc{φ} has been determined,
the optimization of the balance parameter a can be per-
formed. Introducing the profile functional

D{φ} ≡

1∫
0

dζ [φ′(ζ)]
2
− 1, (27)

which quantifies how strongly φ differs from the laminar
profile, the bound produced by a particular profile φ can
be written as

cε(Re ) ≤



[1 +D{φ}]Re−1

for 0 ≤ Re <
1

2
Rc{φ}[

1 +
D{φ}Rc{φ}

2

4 (Rc{φ} −Re)Re

]
Re−1

for
1

2
Rc{φ} ≤ Re < Rc{φ} ;

(28)

the optimal bound cε(Re ) obtainable from the profile’s
variation corresponds to the lower envelope of the indi-
vidual graphs (28). It should be noted that each such
graph is continuous, and even continuously differentiable,
at Re = 1

2Rc{φ}.
The asymptotic bound (7) has been derived in pre-

cisely this manner. That bound is mathematically rig-
orous, but the fact that it lies still an order of magni-
tude above the experimental data is disappointing, to say
the least. In particular, it remains unclear whether also
the true dissipation coefficient cε becomes asymptotically
constant, or whether the method is simply not power-
ful enough to capture a possibly existing asymptotic de-
crease to zero. Obviously, the price paid for abandoning
the Navier–Stokes dynamics in the estimate (18) was too
high; the hope that one could at least partially compen-
sate for this sacrifice by exploiting the freedom to adjust
the auxiliary field was overly optimistic. It appears that
the bound on the dissipation rate can only be improved if
one succeeds in preserving some characteristic properties
of real turbulent flows, all of which still enter on the left
hand side of the estimate (18), when going to the right
hand side of that inequality. Seeking the infimum over all
stationary, divergence-free vector fields V(x) with homo-
geneous boundary conditions is — albeit mathematically
convenient — too strong an estimate with respect to the
actual physics; it should be sufficient to seek the infimum
only within a restricted class of fields that share essential
properties of the physically realized turbulent deviations
v(x, t). The infimum within that restricted class should
(hopefully) be higher than that pertaining to the full set
of all V, hence one subtracts more from the first term in
the bounding inequality (16) — the bound is lowered.

3 Modification of the variational principle

The property of real turbulent flows which we focus on
in the present first attempt to make the above delibera-
tions work is their smoothness on length scales below the
“inner” scale of turbulence, which is of the order of the
Kolmogorov length

η = (ν3/ε)1/4. (29)

More precisely, one meets the transition from the vis-
cosity-dominated, “viscous” subrange where the flow is
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smooth to the inertial subrange where it is determined by
convection at ` ≈ 10 η [30]; a turbulent velocity field con-
tains eddies with all sizes between the “outer” scale h and
10 η, but, except for occasional fluctuations, no smaller
ones.

To see how to incorporate this basic fact into the vari-
ational principle, we need to recapitulate some of the tech-
nical details encountered when checking the admissibility
of a test profile φ [17,18]. Exploiting the periodic bound-
ary conditions in the x-y-plane, the eigenvectors V and the
Lagrange multiplier P entering into the eigenvalue prob-
lem (25) are written as

V(x) = Ṽ(z) ei(kxx+kyy)

P (x) = P̃ (z) ei(kxx+kyy). (30)

Hence, the eigenvalue problem adopts the form

λ Ṽx = −2h2
(
∂2
z − k

2
)
Ṽx +Rφ′ Ṽz + i kxP̃

λ Ṽy = −2h2
(
∂2
z − k

2
)
Ṽy + i kyP̃

λ Ṽz = −2h2
(
∂2
z − k

2
)
Ṽz +Rφ′ Ṽx + ∂zP̃

0 = i kxṼx + i kyṼy + ∂zṼz , (31)

with k ≡
√
k2
x + k2

y; the boundary conditions read Ṽ(0) =

Ṽ(h) = 0. For a given profile φ and fixed wave numbers
kx and ky , one first determines that value R0{φ}(kx, ky)
for which the lowest eigenvalue λ becomes zero; the de-
sired value Rc{φ}, which according to the previous section
corresponds to the maximal Reynolds number Re up to
which φ remains an admissible test profile, is then found
by minimizing over all wave numbers:

Rc{φ} = min
kx≥0, ky>0

{R0{φ}(kx, ky)}· (32)

As a convenient class of test profiles, which is likely to
exhaust the variational principle at least for high Reynolds
numbers [19], we propose

φ(ζ) =



1

2
(1− p) + p ζ −

1

2
(1− p) (1− ζ/δ)n

for 0 ≤ ζ ≤ δ

1

2
(1− p) + p ζ

for δ < ζ < 1− δ

1

2
(1− p) + p ζ +

1

2
(1− p) (1− (1− ζ)/δ)n

for 1− δ ≤ ζ ≤ 1.

(33)

These profiles are parameterized by the slope p in the
interior, with 0 < p ≤ 1, the polynomial order n ≥ 4,
and the dimensionless width δ of the boundary segments,
0 < δ ≤ 1/2; they are n − 1 times continuously differen-
tiable at the matching points. Determining Rc{φ} for each
member of this set of profiles, computing the graphs (28),
and constructing their lower envelope, i.e., the optimal up-
per bound cε(Re ) for the dissipation coefficient, one finds

that for each Reynolds number Re the minimizing wave
number kx that belongs to the optimal profile is equal to
zero [17]. The minimizing wave numbers ky correspond-
ing to the respective optimized profiles show a more sub-
tle behavior: There is a single, nonzero minimizing ky for
Re ≤ ReB ≈ 460, which bifurcates at ReB and thus gives
rise to two separate branches of minimizing wave numbers
at higher Re. One of these branches, referred to as ky,1,
becomes asymptotically constant, the other one, denoted
as ky,2 in the following, scales proportionally to Re.

From the technical viewpoint, the occurrence of two
minimizing wave numbers reflects a degeneracy of the
eigenvalue problem (25): Above ReB, two eigenvalues pass
through zero simultaneously. This manifests itself in the
fact that R0{φ}(0, ky), considered as function of ky for a
profile φ that is optimal at some particular Re0, possesses
a double minimum; the common value

R0{φ}(0, ky,1) = R0{φ}(0, ky,2) (34)

obviously equals R(Re0), i.e., that rescaled Reynolds
number (26) which belongs to the Reynolds number Re0 at
which the profile is optimal. (If it were lower, φ would not
be admissible at Re0; if it were higher, another φ would
produce a lower bound at Re0.) The equality (34) thus ex-
presses one of the most characteristic features of the vari-
ational principle. (If the eigenvalue problem (25) should
possess an even higher degeneracy, as one might perhaps
guess on the grounds of Busse’s multi-α-solutions to the
variational problem occurring in the Optimum Theory
[11,12], then a suitable class of test profiles, more sophisti-
cated than (33), would lead to multiple minima of the cor-
responding functions R0{φ}(0, ky). Nonetheless, the value
of each minimum would have to be precisely R(Re0), as
in our case).

From the physical viewpoint, the two minimizing
branches of wave numbers reflect two characteristic length
scales of the optimized profiles: 2π/ky,1 ∝ Re0 corre-
sponds to the length of the interior segment where the op-
timized profiles become flat; 2π/ky,2 ∝ Re−1 corresponds
to the extension of the segments close to the boundaries
at ζ = 0 and ζ = 1 where the profiles become steep
[17,19]. It is this second, shrinking length scale which
is physically objectionable. Namely, the Kolmogorov
length (29) can be written in the form

η/h =
(
cεRe

3
)−1/4

; (35)

η thus decreases as Re−3/4 if the true dissipation co-
efficient cε approaches a nonzero constant, and even
weaker if cε decreases slightly with Re. Since, on the
other hand, 2π/ky,2 decreases as Re−1, the extension of
the profiles’ steep boundary segments will, at sufficiently
high Reynolds numbers, inevitably become smaller than
10 η. When that happens, the bound cε provided by the
variational principle is determined by an eigenvector V
which is characterized by a wave number ky larger than
2π/(10 η), i.e., by an eigenvector belonging to a subset
of V-space which is, supposedly, not visited by the tur-
bulent deviations v(x, t) — always assuming, of course,
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Fig. 3. Optimized test profiles, for Re = 106, as resulting
from the original variational principle that does not take the
Kolmogorov length into account (dashed), and from the self-
consistently modified principle (full line; b = 10). The latter
principle yields profiles which are slightly less steep in the
vicinity of the boundaries. Note the break of the scale of the
abscissa.

that the auxiliary field U is sufficiently smooth. Then the
spectral constraint imposed on the test profiles is overly
restrictive and should be weakened.

Since the true dissipation coefficient cε, and hence the
true Kolmogorov length η, is not at our disposal, we define
an auxiliary length η∗ according to

η∗/h ≡
(
cεRe

3
)−1/4

, (36)

with cε as provided by the variational principle. Since
cε ≤ cε, we have η∗ ≤ η. Hence, when 2π/ky,2 drops
below 10 η∗, then it is a fortiori smaller than 10 η, the
length scale marking the transition from the inertial to
the viscous subrange.

Figure 2 shows the ratio 2π/(ky,2 η
∗) corresponding to

the asymptotically constant bound cε obtained in refer-
ence [17], which had already been displayed in Figure 1.
At about Re = 3 × 104 this ratio passes the value 10,
so that the bound becomes determined by an eigenvector

with unphysically small spatial structure. To remedy this
deficiency, we employ the following algorithm:

(i) For each Reynolds number Re, the upper bound
cε(Re ) provides a length scale η∗ according to equa-
tion (36).

(ii) Given η∗, we define the maximal wave number admit-
ted,

k∗y,2
2π
≡

1

b η∗
, (37)

with a cutoff parameter b set equal to 10, following
the insight that the transition to the viscous subrange
occurs at about 10 η. (Note that this is a worst-case
estimate, since we are not working with the true Kol-
mogorov length η, but rather with the smaller η∗.) In
order to check the dependence of our results on the cut-
off parameter, we will also consider the values b = 5
and b = 20.

(iii) We then adjust the variational profiles such that the
characteristic identity (34) is satisfied with k∗y,2 instead
of the previous ky,2,

R0{φ}
(
0, k∗y,1

)
= R0{φ}

(
0, k∗y,2

)
; (38)

the new lower minimizing wave number k∗y,1 again has
to be determined by a minimum search. In this way,
we restrict the wave numbers ky of the eigenvectors
which belong to the lowest eigenvalue of (25) at its
passage through zero to values less than 2π/(b η∗), thus
mimicking the small-scale smoothness of the turbulent
deviations v(x, t).

(iv) Going through the already familiar lower-envelope
procedure [17,18], we construct a new bound cε(Re )
and then step back to i): The new bound yields a new
value η∗, which, in its turn, gives a new wave num-
ber k∗y,2, and so forth. Iterating this scheme, η∗, k∗y,2,
and cε are found to converge fairly rapidly, until in
the end the equations (36), (37), and (38) are satisfied
simultaneously.

Though this self-consistent procedure is rather intricate
as far as the numerical effort is concerned, its essence is
fairly simple: Since the admissibility of the profiles φ is no
longer tested for all wave numbers, but only for that subset
which complies with the smoothness of turbulent flows at
scales below 10 η∗, the limits of admissibility Rc{φ} are
increased, so that the lower envelope of the graphs (28)
decreases. A comparison of optimized profiles as provided
by the original variational principle and its self-consistent
descendant is depicted in Figure 3; as expected, the latter
are less steep in the vicinity of the boundaries.

It may be helpful to spell out the hypothesis under-
lying the construction of the new bound in mathemati-
cal terms. A self-consistently computed profile φ, which
leads to a lowering of the previous bound, would not have
passed the original admissibility criterion; it gives rise to
(possibly many) negative eigenvalues of the problem (25)
when the latter is considered for all wave numbers kx,
ky. Hence, the solution W to the Euler–Lagrange equa-
tions (19) now corresponds to a saddle point . We thus
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Fig. 4. Minimizing wave numbers ky belonging to the optimal
upper bound on the dissipation coefficient cε(Re ). The upper-
most and the lowest solid line represent the wave numbers ky,2
and ky,1 furnished by the unmodified variational principle. The
full line that bifurcates at Re ≈ 3× 104 from the upper line is
the wave number k∗y,2/(2π/h) ≈ 0.040 × Re0.73 resulting from
the modified principle for b = 10 (fit to the data; the asymp-
totic exponent is 0.706(3)). The two adjacent dashed lines in-
dicate the analogous results for b = 5 (upper dashed line) and
b = 20 (lower dashed line). The data for k∗y,1 with b = 5, 10,
and 20 are almost equal to ky,1. The wave numbers are plotted
in multiples of 2π/h.

rely on the assumption that every eigenvector furnished
by a self-consistently computed φ, which belongs to an
eigenvalue that has passed zero and has become negative,
remains associated with unphysically large wave numbers,
so that the solution to the Euler–Lagrange equations (19),
although being a saddle-point with respect to the entire
V-space, still corresponds to the minimum of its physically
accessible subset. Therefore we use the solution to equa-
tion (19) precisely as we did in the previous procedure, and
arrive at the same bounding graphs (28) also for the self-
consistent profiles, so that the subsequent lower-envelope
construction remains formally unchanged.

In Figure 4 we compare the minimizing wave numbers
k∗y,2 and k∗y,1 that result from the numerical solution of the
self-consistency problem to the minimizing wave numbers
ky,2, ky,1 furnished by the unmodified variational princi-
ple, represented by the uppermost and lowest solid lines.
The additional solid line bifurcating at Re ≈ 3× 104 from
the upper one indicates k∗y,2 for b = 10. A fit to the power
law

k∗y,2

2π/h
∼ C Reγ (39)

shows that these numerical data are well described by

C ≈ 0.040 and γ ≈ 0.73. (40)

More careful data inspection reveals that these param-
eters do not describe the true asymptotic behavior of
k∗y,2; as argued in Appendix A, one expects an exponent
γ∞ = 0.706(3) in the asymptotic regime. Nonetheless, we
state the “local” values of C and γ here, valid for Reynolds
numbers between roughly 105 and 107, since the asymp-
totics are reached only at unrealistically high Re (see also
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Fig. 5. Bound on cε(Re ) obtained from the original varia-
tional principle (upper full line) compared to the new bound
resulting from the modified principle for b = 10 (lower full line;
corresponding to the short-dashed line in Figure 1.) The two
short-dashed lines indicate the analogous results for b = 5 and
b = 20; the long-dashed line on the left is the lower bound (6).
Note the linear ordinate. (The data for b = 20 seem to change
their slope for Re > 106. Since this occurs only at the very limit
of the regime where our numerical routines can work reliably,
we consider this to be an artifact.).

Appendix B for quite accurate, analogous results obtained
for a simplified model). The two adjacent dashed lines
mark k∗y,2 for b = 5 and b = 20, respectively; they are
described by the same exponent γ∞ in the asymptotic
regime. The data for ky,1 and k∗y,1 with b = 5, 10, and
20 are almost indistinguishable, so that they fall onto a
single line.

Figure 5 shows, with linear ordinate, the correspond-
ing upper bounds on the dissipation coefficient: The upper
solid line represents the bound provided by the unmodi-
fied principle (which approaches the constant value (7)
for large Re); the long-dashed line on the left is the lower
bound (6) determined by the laminar flow. The additional
solid line emerging at Re ≈ 3×104 indicates the improved
bound obtained from the modified principle for b = 10; the
displayed data are well fitted by

cε(Re ) ∼ ARe−α (41)

with

A ≈ 0.027 and α ≈ 0.08. (42)

Again, this is a local fit; the numerical data are consis-
tent with the asymptotic value α∞ = 0.18(1) (see Ap-
pendix A). The two short-dashed lines mark the bounds
obtained for b = 5 and b = 20; they obey the same asymp-
totic power-law decrease. It should be noted that, as a
consequence of the definitions (36, 37), the parameters A
and α should be related to the parameters (40) by

A1/4/C ∼ b and α = 3− 4γ. (43)

Both our local coefficients A and C and the local expo-
nents α and γ obey these relations well, even though they
do not describe the (in the mathematical sense) “true”
asymptotics; the asymptotic exponents satisfy α∞ = 3−
4γ∞, as required.
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4 Discussion

One of the most interesting questions for judging the re-
sults produced by the variational principle is whether an
optimal variational profile φ(ζ) is somehow related to the
time-averaged mean profile ψ(ζ) of the turbulent field
u(x, t). With increasing Reynolds number, the optimized
profiles become flat in the interior (i.e., the slope p pa-
rameterizing the optimized test profiles (33) approaches
zero for Re→∞), and steep in the vicinity of the bound-
aries; for the case of the original variational principle we
have shown previously that the variational parameter n
becomes proportional to Re at high Reynolds numbers,
whereas p vanishes proportional to Re−1 [17–19]. Mean-
flow profiles tend to behave similarly, but on the first
glance there seems to be no obvious reason why the two
types of profiles should exhibit more than just a super-
ficial resemblance. The only mathematical argument en-
countered so far which connects the optimal auxiliary field
U, and hence its profile φ, to a time average arises from
the estimate (18): U should be chosen such that after in-
serting the turbulent deviations v = u − U into the in-
tegrand on the left hand side of (18) and averaging over
time, one comes as close as possible to the expression ob-
tained when replacing v by the minimizing stationary field
V = W{U}. Nonetheless, at least one more direct state-
ment can be made. It rests on the observation that the
true dissipation rate ε is related to the derivative ψ′(0)
of the (normalized) mean-flow profile at the boundary by
means of the identity

cε(Re ) =
ψ′(0)

Re
, (44)

which follows directly from the Navier–Stokes equations
by dotting with u and averaging over both the volume
Ω = LxLyh and time. A similar expression connecting
the upper bound cε(Re ) and the derivative φ′(0) of the
optimized variational profiles can be found at least in the
regime of asymptotically high Re, if one recalls that there
exists a systematic expansion of the bound in terms of
the profile functional (27) and the rescaled Reynolds num-
ber (26) (stated as Eqs. (3.3, 3.4) in Ref. [19]). This ex-
pansion reduces to

cε(Re ) ∼
27

16

D{φ}

R
(45)

and

R ∼
3

2
Re (46)

for highRe; the symbol “∼” indicates asymptotic equality.
Hence, we have

cε(Re ) ∼
9

8

D{φ}

Re
, (47)

where the argument of D is that profile which yields the
optimal bound at Re. It should be noted that this ex-
pression holds both for the unmodified and the modified

principle (although, of course, the optimal φ are different
in these two cases), since the two principles differ only in
the admitted profiles φ, but not in the way the bound is
constructed after the admissibility has been ascertained.
The relation between the profile functional D{φ} and the
boundary slope φ′(0) depends on the specific test profiles
used. Inserting our test profiles (33), the profile functional
becomes

D{φ} =

[
1

2

n2

(2n− 1) δ
− 1

]
(1− p)2 ∼

n

4 δ
, (48)

keeping in mind that p vanishes asymptotically, while n
becomes large. On the other hand, one finds

φ′(0) = p+
n

2δ
(1− p) ∼

n

2 δ
, (49)

implying

D{φ} ∼
1

2
φ′(0). (50)

Thus, the relation (47) leads to the asymptotic analogue
of equation (44),

cε(Re ) ∼
9

16

φ′(0)

Re
· (51)

Since cε(Re ) ≤ cε(Re ), one now deduces the asymptotic
inequality

φ′(0) ≥
16

9
ψ′(0) for Re→∞, (52)

stating that the derivative of the optimized variational
profile at the boundary has to become strictly larger
than that of the mean-flow profile. It appears remarkable,
though, that the lowest possible factor 16/9 ≈ 1.78 by
which φ′(0) has to exceed its mean-flow counterpart at
high Re is merely a Re-independent number of the order
of unity, so that the optimal profiles produced by the vari-
ational principle can actually share some properties of the
physically realized mean profiles ψ(ζ).

Apart from its conceptual importance, the asymptotic
relation (51) can also be exploited for checking the con-
sistency of our numerical routines. Our data for φ′(0), as
obtained from the modified variational principle with the
cutoff parameter b = 10, are well described by the local fit

φ′(0) ∼ BReβ (53)

with

B ≈ 0.047 and β ≈ 0.92; (54)

they are plotted, together with the corresponding data for
b = 5 and b = 20 and those provided by the unmodified
principle, in Figure 6. (The expected asymptotic value of
the exponent is β∞ = 0.82(2)). Whereas the previous rela-
tions (43) between the parameters C and γ characterizing
the upper minimizing wave number k∗y,2 and the param-
eters A and α describing the dissipation bound cε were
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Fig. 6. Boundary slope φ′(0) of the optimized profiles per-
taining to the unmodified variational principle (upper full line:
φ′(0) ∼ 0.019 × Re; the coefficient 0.019 is 16/9 times the
value of the asymptotic bound (7)), and to the modified prin-
ciple with b = 10 (lower full line; the data are fitted by
φ′(0) ≈ 0.047 × Re0.92, while the asymptotic value of the ex-
ponent is 0.82(2)). The two dashed lines indicate the slopes
obtained from the modified principle with b = 5 (upper dashed
line) and b = 20 (lower dashed line).

merely a consequence of the definitions (36) and (37), the
relations

A/B ∼ 9/16 and β = 1− α (55)

demanded by the asymptotic identity (51) constitute a
more stringent test of our numerical results. Obviously,
the local exponents α ≈ 0.08 and β ≈ 0.92 = 1 − 0.08
obtained directly from fits to the respective raw data pass
this test very well; even the ratio of the coefficients A and
B does not fail.

The compliance of both the local exponents α, β, and
γ and their asymptotic limits stated in Appendix A with
the two relations α = 3− 4γ and β = 1−α indicates that
these exponents have been determined correctly. Thus, the
power-law decrease (41) of the bound on the dissipation
coefficient, with its b-independent asymptotic exponent α,
has to be taken seriously; this is what the self-consistently
modified variational principle has to offer. It seems ap-
propriate to re-emphasize that this bound still stands on
somewhat shaky feet, since our argument is lacking mathe-
matical rigor. Hence, some caution is still advised, and fur-
ther work along the lines suggested in this work is clearly
necessary. From the viewpoint of the physicist, the insight
gained by giving up formal rigor is substantial. Already
our local exponent α ≈ 0.08, valid around Re ≈ 106, is
more than twice as large as the exponent κ ≈ 0.035 which,
according to reference [9], could be implied by intermit-
tent fluctuations; the asymptotic value α∞ = 0.18(1) ex-
ceeds κ by a factor of more than five. This is no contra-
diction: That latter work is concerned with homogeneous
isotropic bulk turbulence, whereas here we consider the to-
tal volume-averaged dissipation rate of wall-bounded shear
flow; in fact, our crucial length scale 2π/ky,2, the consider-
ation of which led to the lowering of the dissipation bound,
is intimately linked to the extension of the variational pro-
files’ boundary segments [19]. This is a serious indication
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Fig. 7. Local exponents γ(Re ) obtained from the numerical
raw data (circles) for b = 5, 10, and 20 (top to bottom). The
solid lines indicate fits to the function (A.2). The coefficient a0

is almost the same for each of the three data sets, thus giving
the asymptotic exponent γ∞ = 0.706(3). Note that this value
will be reached only at Reynolds numbers that are significantly
higher than those accessible to our numerics.

that some signatures of shear-driven, wall-bounded turbu-
lence might differ substantially from those implied by the
theoretical ideal of homogeneous, isotropic turbulence.

This work was supported by the Deutsche Forschungs-
gemeinschaft via the Sonderforschungsbereich “Nichtlineare
Dynamik”, SFB 185.

Appendix A: Asymptotics of the dissipation
bound

In order to extract the parameters A∞ and α∞ govern-
ing the asymptotic behavior of the bound cε(Re ) from
our numerical raw data {Rej , cε(Rej)} (where the index
j labels successive data points), we first consider “local”
exponents given by

−α(Rej) ≡
ln cε(Rej+1)− ln cε(Rej)

lnRej+1 − lnRej
; (A.1)

local exponents β(Re ) and γ(Re ) describing the bound-
ary slope φ′(0) and the upper minimizing wave number
k∗y,2/(2π/h) are defined analogously. As shown in Figure 7
for the example of γ(Re), even for the highest Reynolds
numbers accessible to our numerics the exponents thus
obtained have still not settled down to their asymptotic
values. We therefore fit the local exponents to the function

f(Re ) = a0 +
a1

a2 + lnRe
; (A.2)

the quality of these fits is confirmed by the solid lines in
Figure 7. It turns out that in all three cases — that is,
when fitting cε, φ

′(0), or k∗y,2/(2π/h) — the respective
parameter a0 adopts almost the same value for b = 5,
10, and 20. In this way, we obtain reliable, b-independent
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Fig. 8. Local exponents γ(Re ) for the two-dimensional model
without spanwise degrees of freedom, for b = 5, 10, and 20 (top
to bottom). Fits to the five-parameter-function (B.1) result in
graphs that are indistinguishable from the numerical raw data
displayed in the figure. The three fits consistently provide the
value a0 = 0.709(1) for the asymptotic exponent γ∞. This
asymptotic value lies still significantly below the values reached
at Re = 109.

estimates for the asymptotic exponents:

α∞ = 0.18± 0.01, (A.3)

β∞ = 0.82± 0.02, (A.4)

γ∞ = 0.706± 0.003. (A.5)

However, the physical significance of these numbers has to
be questioned, since the asymptotics are reached rather
slowly: According to our fit we expect, for instance,
α(1010) ≈ 0.13 and α(1020) ≈ 0.16. Because of equa-
tions (43, 55), β and γ exhibit the same creeping con-
vergency.

The asymptotic coefficients A∞, B∞, and C∞ are then
found in the same manner, i.e., by introducing local co-
efficients A(Re ), B(Re ) and C(Re ), and employing the
same fitting function (A.2). Of course, these coefficients
do depend on the cutoff parameter b; we state the approx-
imate asymptotic values for b = 10 here:

A∞ ≈ 0.34, (A.6)

B∞ ≈ 0.61, (A.7)

C∞ ≈ 0.063. (A.8)

Obviously, the required relation A
1/4
∞ /C∞ ∼ b is not

obeyed too well. However, it must be borne in mind that
to determine these coefficients constitutes a serious ex-
trapolation; the asymptotic values A∞ and B∞ exceed
the values of A(106) and B(106) by more than a factor
of 10.

Appendix B: Asymptotic exponents
for a 2-dimensional model

A useful model for exploring the variational principle for
the upper bound on the dissipation rate in plane Couette

flow is obtained if one omits the spanwise degrees of free-
dom, i.e., if one artificially fixes the wave number ky to
zero. The properties of the resulting 2-dimensional model
system are remarkably similar to those of the full prob-
lem [18,19]. In particular, its minimizing wave numbers kx
show the same bifurcation as the minimizing wave num-
bers ky in the case of the unrestricted system. Since the
restriction ky ≡ 0 implies a drastic simplification of the
mathematics, the model problem lends itself to both de-
tailed asymptotic analysis [19] and numerical treatment at
Reynolds numbers well above 107. In Figure 8 we display
our results for this model’s local exponents γ(Re ), de-
fined as in Appendix A and computed with the same two-
parameter test profiles as employed in reference [18]. Note
that the numerical data span five decades of Reynolds
numbers; the quality of the data is signaled by the smooth-
ness of the curves. Fits to the five-parameter function

g(Re ) = a0 +
a1

a2 + lnRe
+

a3

(a4 + lnRe)2
(B.1)

result in graphs that are practically indistinguishable from
the raw-data curves drawn in the figure; all three fits con-
sistently yield the same value a0 = 0.709(1) for the asymp-
totic exponent γ∞. Fitting the data for the model’s self-
consistent bound cε and the boundary slope φ′(0) to the
same function (B.1), we obtain

α∞ = 0.164± 0.002, (B.2)

β∞ = 0.836± 0.004, (B.3)

γ∞ = 0.709± 0.001. (B.4)

These asymptotic exponents of the model are well com-
patible with the relations α = 3 − 4γ and β = 1 − α,
and even agree, within the error bars, with the exponents
provided by the unrestricted system.

Clearly, more illustrative than the actual numerical
values of the exponents is their creeping approach to the
asymptotics: As seen in Figure 8, even at Re = 109

the local value of γ (with b = 10) is still about 0.718.
The regime of Reynolds numbers ranging from Re = 107

to 109 is actually well described by γ ≈ 0.72, giving a lo-
cal exponent α ≈ 0.12 which is only about three quarters
of its asymptotic value. This indicates once more that the
mathematically proper asymptotics might not be reach-
able with physically accessible Reynolds numbers.
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